Как роботы могут ограничить воздействие на окружающую среду морских ветроэлектростанций

Обновление: 21 мая 2021 г.
Как роботы могут ограничить воздействие на окружающую среду морских ветроэлектростанций

Ожидается, что расходы на глобальную морскую инфраструктуру возобновляемых источников энергии в течение следующих десяти лет составят более 16 миллиардов долларов США (11.3 миллиарда фунтов стерлингов). Это предполагает создание к 2.5 году дополнительных 2030 миллиона километров глобальных подводных кабелей.

Чтобы проложить и обезопасить эти кабели от океанских течений, необходимо вспахать морское дно и сбросить камни и бетонные «матрасы», которые служат в качестве основы для кабелей - процедуры, которые очень разрушительны для морской экосистемы, которую так многие существа называют своим домом.

Установка ветряных электростанций на шельфе требует множества таких процедур с высокой степенью воздействия, которые часто выполняются без особого учета их воздействия на хрупко сбалансированную океанскую среду, от которой более 3 миллиардов человек полагаются для получения пищи и средств к существованию.

Деятельность человека, в том числе создание инфраструктуры возобновляемых источников энергии, затронула более 40% поверхности океана, создав зоны мертвого океана, лишенные кислорода, цветение водорослей, наносящих вред морским видам, и разрушительную потерю биоразнообразия.

Если мы продолжим идти по этому пути, предсказанная революция зеленых технологий рискует нанести беспрецедентный ущерб мировому океану. Новое поколение производителей возобновляемой энергии должно оценить свое долгосрочное воздействие на окружающую среду океана, чтобы оценить, насколько на самом деле устойчивы их цепочки поставок и методы.

Поскольку в этом году ООН начинает свое десятилетие устойчивости океана, роль, которую автономные технологии могут сыграть в поддержке морской среды, продолжает получать признание. Мы не можем рассчитывать на реализацию устойчивых technology без предварительного внедрения экологически сознательной практики в самом секторе возобновляемых источников энергии. Вот тут-то и приходит на помощь робототехника.

Стоимость обслуживания

Около 80% затрат на содержание морских ветряных электростанций тратится на отправку людей для проведения инспекций и ремонта с помощью вертолета, техническое обслуживание вспомогательных транспортных средств, таких как лодки, и строительство морских платформ для размещения рабочих турбин. Все это увеличивает выбросы углерода. Не только это, но и оффшорные инспекторы также должны работать на опасной высоте и в замкнутых пространствах, и то и другое опасно.

Однако объединенная команда людей, роботов и искусственного интеллекта, работающая вместе, могла бы поддерживать эту инфраструктуру со значительно меньшим воздействием на окружающую среду и большей безопасностью для людей. В эти группы могут входить люди, работающие удаленно с группами автономных воздушных и подводных аппаратов, состоящими из нескольких роботов, а также с ползучими или наземными роботами.

Автономные подводные аппараты (AUV) находят множество применений, когда дело доходит до обслуживания и ремонта турбин в море.

Трансформирующая технология

Робототехника может помочь людям взаимодействовать со сложной уязвимой средой, не причиняя им вреда. Роботы, которые используют бесконтактные методы зондирования, такие как радар и гидролокатор, могут взаимодействовать с инфраструктурой океана и окружающей его средой, не вызывая каких-либо сбоев или повреждений.

Еще более совершенная технология зондирования, известная как низкочастотный гидролокатор - звуковая технология, основанная на сигналах, используемых дельфинами для общения, - позволяет обследовать структуры, такие как подводная инфраструктура и подводные кабели в океане, без ущерба для окружающей среды.

Развернув технологию низкочастотного гидролокатора с использованием автономных подводных аппаратов (АНПА) - роботов, которые управляют собой - мы можем лучше понять, как такие конструкции, как подводные кабели, взаимодействуют с окружающей средой. Мы также можем помочь избежать таких проблем, как биообрастание, когда на поверхности кабелей скапливаются микроорганизмы, растения, водоросли или мелкие животные. Кабель с биологическим загрязнением может стать тяжелым, потенциально деформируя его внешние защитные слои и сокращая срок его полезного использования. АНПА могут безопасно контролировать и очищать эти кабели.

Над поверхностью

Роботы тоже могут помочь над водой. Когда срок службы лопастей ветряных турбин подходит к концу, их часто сжигают или выбрасывают на свалки. Это напрямую противодействует подходу «экономики замкнутого цикла» - пропаганде предотвращения образования отходов и повторного использования как можно большего количества материалов, что является центральным условием достижения технологической устойчивости. Вместо этого мы можем использовать роботов для ремонта, перепрофилирования или переработки ломающихся лезвий, сокращая ненужные отходы.

Используя дроны, оснащенные передовой технологией радиолокационного зондирования, мы теперь можем видеть дефекты в турбинах, когда они начинают развиваться. Вместо использования полевых вспомогательных судов для транспортировки инспекторов турбин в море (что обходится примерно в 250,000 XNUMX фунтов стерлингов в день) использование роботов-помощников для информирования о техническом обслуживании турбин экономит время, деньги и риски.

Помимо сокращения финансовых и углеродных затрат на техническое обслуживание турбин, роботы могут минимизировать неотъемлемые риски для людей, работающих в этих непредсказуемых средах, а также работать в более тесном симбиозе с окружающей средой. Развертывая роботов-резидентов для проверки и обслуживания морской возобновляемой инфраструктуры, энергетические компании могут первоначально сократить количество людей, работающих на опасных морских объектах. Со временем мы могли бы даже достичь точки автономной работы, когда операторы остаются на суше и удаленно подключаются к морским робототехническим системам.

ИИ - еще один ключевой компонент в построении устойчивых энергетических систем. Например, программы искусственного интеллекта могут помочь энергетическим компаниям спланировать, как безопасно разобрать турбины и безопасно доставить их на берег. После прибытия на берег турбины могут быть доставлены на «умные» заводы, которые используют комбинацию робототехники и искусственного интеллекта, чтобы определить, какие из их частей можно использовать повторно.

Работая в этих командах, мы можем разработать надежную и устойчивую экономику замкнутого цикла для оффшорных компаний. возобновляемый энергетический сектор